首页> 外文OA文献 >FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs
【2h】

FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs

机译:FlashGraph:在商品ssD阵列上处理十亿节点图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graph analysis performs many random reads and writes, thus, these workloadsare typically performed in memory. Traditionally, analyzing large graphsrequires a cluster of machines so the aggregate memory exceeds the graph size.We demonstrate that a multicore server can process graphs with billions ofvertices and hundreds of billions of edges, utilizing commodity SSDs withminimal performance loss. We do so by implementing a graph-processing engine ontop of a user-space SSD file system designed for high IOPS and extremeparallelism. Our semi-external memory graph engine called FlashGraph storesvertex state in memory and edge lists on SSDs. It hides latency by overlappingcomputation with I/O. To save I/O bandwidth, FlashGraph only accesses edgelists requested by applications from SSDs; to increase I/O throughput andreduce CPU overhead for I/O, it conservatively merges I/O requests. Thesedesigns maximize performance for applications with different I/Ocharacteristics. FlashGraph exposes a general and flexible vertex-centricprogramming interface that can express a wide variety of graph algorithms andtheir optimizations. We demonstrate that FlashGraph in semi-external memoryperforms many algorithms with performance up to 80% of its in-memoryimplementation and significantly outperforms PowerGraph, a popular distributedin-memory graph engine.
机译:图分析执行许多随机读取和写入,因此,这些工作负载通常在内存中执行。传统上,分析大型图需要一台机器集群,因此总内存超过了图的大小。我们证明了多核服务器可以利用性能损失最小的商用SSD处理具有数十亿个顶点和数千亿个边的图。为此,我们在为高IOPS和极高并行度而设计的用户空间SSD文件系统之上实现了图形处理引擎。我们称为FlashGraph的半外部内存图引擎将vertexex状态存储在内存和SSD的边缘列表中。它通过与I / O重叠计算来隐藏延迟。为了节省I / O带宽,FlashGraph仅访问SSD从应用程序请求的边缘列表。为了提高I / O吞吐量并减少I / O的CPU开销,它会保守地合并I / O请求。这些设计可为具有不同I / O特性的应用程序最大化性能。 FlashGraph公开了一个通用且灵活的以顶点为中心的编程接口,该接口可以表达各种各样的图形算法及其优化。我们证明,半外部存储器中的FlashGraph可以执行许多算法,其性能高达其内存中实现的80%,并且明显优于流行的分布式内存图引擎PowerGraph。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号